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The following slide contains spoilers!

In this lecture we discussst order optimization over manifolds of
distributions

We optimize functionals de ned over statistical manifolofg means of
(stochastic) natural gradiendescent

We focus ondiscrete statistical modelim the exponential familyeven if
most of the discussion applies also to the continuous case
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Motivation

The main maotivation isstochastic optimizationi.e., randomized search
methods which introduce randomness into the search process

In particular we are interested imodel-based optimizatign.e., a broad
family of algorithms which employ statistical models todpiithe search
for the optimum of a function

Model-based algorithms often generate minimizing seqeeraf
probability distributions in a statistical model
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Some Notation

i foxe R the objective function

i a nite search search space

i p"xe a probability distribution over the sample space

i Po the uniform distribution over

i the probability simplex

i M Tp'x; e > e aparametrized statistical model

i a parameter vector fop
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Stochastic Relaxation
Consider the minimization problem

P) minf “xe
x>

LetF pe Ep f , we look for the minimum of by optimizing the
Stochastic RelaxatiolfSR) of f

(SR) inf F pe
p>M
[Remark] We takenf, since in generall may not be closed

We getcandidatesolutions for P by sampling optimal solutions of the SR

We introduce a chart overM “p'x; ¢ > e letF" ¢ E f ,we
have aparametric representatio(in coordinates) of the SR

(SR)  infF" e
>
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A Few Remarks

We move the search to the space of probability distributjdinem a
discrete optimization problem over to a continuous optimization
problem ovev

In the parametric representation &f, the parameters become the new
variables of the SR

Since > , we may have a constrained formulation of the SR

[Disclaimer] The SRioes notprovidelower bounddor P, indeed
minf “xe¢ BF "pe Bmaxf "xe
X> X>

LetM , Minys f7°xe ming. F7pe

More in general, foM ~ , miny> f"xe Binfym F pe
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Closure of M

We denote withM the topological closuref M , i.e., M together with
the limits of (weakly convergent) sequences of distribasion M

Moreover, we supposd is compactso that by the extreme value
theoremF "pe attains its in mum overM
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Equivalence of P and SR

Let us denote the optimal solutions
i x¥> * argmin,, f xe

i pf>P* argmin osir F P

The SR is equivalent to P ip*"x*e 1, i.e., the probability of sampling
optimal solutions of P from optimal solutions of SR is equallt

In other words, there must exists a sequefipgs in M such that
lim pxte 1

A su cient condition for the equivalence of SR and P is that all Dirac
distribution  are included irM
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Why are we doing this?

Let us clarify some points
i Letk be the cardinality of , to parametrize we neeck 1
parameters
i Minimizing F"pe with p> is as computationally expensive as an
exhaustive search

And so, why going from to M ?

i In practice we restrict the search to some lower-dimendiomadel

i The equivalence of P and SR can be easily guaranteed by low
dimensional models

i We can develop e cient blackbox optimization algorithms

i Itis possible to identify (e.g., learn) submodels for whiolte
properties hold (e.g., gradient descent converges to dlopimum)
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Which Model to Choose?

[Remark] The landscape & pe depends on the choice & , i.e., the
number of local minima of “pe depends orM

Often it is convenient to work witlgraphical models

i There exists an interpretation of the model in terms of caiodial
independence assumptions among variables

i We can de ne hierarchical structures and control model disien
i There is a strong literature about estimation, samplingrteng, ...

In the following we work (mainly) with exponential families
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The Gibbs or Boltzmann Distribution

i The Gibbs distributionis the one-dimensional exponential family

e f “xe
X, ¢ ——————( X, AO
P Eqe f % g

i f"xe the energy function
i the inverse temperature
i g xe the reference measure

i The set of distributions isiot weakly closed
i Supposd “xe COandf "xe 0 for somex > , but not everywhere

ime F ™ o 'xe imEge 7 1
0 q o d
¢ . A
. “ye xe iff"xe 0O . . R
lim e ' 19 _ imEqe "% Qq'xe
a 50 otherwise a +
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Closure of the Gibbs Distribution

Ilmop X; ¢ (Xe
qxe

limp'x; ¢ —m4M8—
o P P :qXe

The Gibbs distribution is in principle an optimal choice floe SR, indeed

i The limit for & has support over the minima @f, and in
particular forg"xe pp, it is the uniform distribution

i Since
©F" o Var “fe @0
F~ e« decreases monotonicalas 2

i The Gibbs distribution satis es the principle of maximumtrepy

However, evaluating the partition function @mputationally infeasible
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Pseudo-Boolean Optimization

In the following we restrictto = 1; 1", and we use thénarmonic
encoding” 1; 1e for a binary variable

1° 1 1t o1
A pseudo-Boolean functioh is a real-valued mapping

foxe 1 1" R

Any f can be expanded uniquely as a square free polynomial
fxe Q C X ;

by employlng amulti-index notation. LetL ~0;1-", then
1;::5; ne* >L uniquely identi es the monomiat by

( M X;'
i1
The degreeof the monomials represents the order of the interaction$ in
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Monomial Representation of PS Functions

Let A" Ala:::a Al wherea denotes the Kronecker product and
11111111111].1.1.1.1.1.1.1.1.1.1.1.1.1.1.11:'1111 11111111111111111

n times
0 1
1 1
1
A 1 1

leta “f xeey. ,we haveA"c a,withc “c « 5 andc 2 "AMa

[Example] In case of two variablgs “Xxj;X2e, we have

f™Xe €y C1X1 CopX2 CiaX1X2

00 10 01 11
Co A 1 1 1 1x@a A
1 1 a c } 1 11 1 128 A
11 a o A 2 1 1 1 1A@a A
11 a A A A
1 1 a c2 B 1 1 1 15%Q 4
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The Independence Model

Let M ; be theindependence modfdr X  “Xq;:::;Xnpe
n
M1 "p p'Xe M pi X
i1
with marginal probabilitieg;"x;s P™X; Xje

We parametrizeM ; using 1 Bernoulli distributions forX;
n ~ ~
pX; o ML et
i1
n
M "2 iXi Xj 1+~2
i1
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Marginal Parameters for the Independence Model

01 11

0(-1,-1)

O(41,-1)
00 1 10

5(—1.+1)
O(+1,41)

M 1 is an-dimensional manifold embedded in tB& 1 dimensional

probability simplex
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Stochastic Relaxation: Who?

The SR can be solved in di erent ways

Sampling, Selection and Estimation paradigm (EDAs, Laagsiand
Lozano, 2002, CE method, Rubinstein, 1997)

Fitness Modeling (DEUM, Shakya et al., 2005)

Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001)

GAs (Holland, 1975), ACO (Dorigo, 1992), ESs (Rechenbeff()

Boltzmann distribution and Gibbs sampler (Geman and Geman,
1984)

Simulated Annealing and Boltzmann Machines (Aarts and Kors
1989)

Method of the Moments (SDP, Meziat et al., 2001)

LP relaxation in pseudo-Boolean optimization (Boros andrifzer,
2001)

...and many others

L. Malago, Applications of IG to CO, 26 Sep 2014



17
Gradient Descent

In the following we will focus on gradient descent techng&goéthe form
ti ot oF" . A0

In particular we refer to gradient-based algorithms such as

i Covariance Matrix Adaptation Evolutionary Strategy (CMZS),
Hansen et al., 2001

i Natural Evolutionary Strategies (NES), Wierstra et al.,()

i Stochastic Natural Gradient Descent (SNGD), M. et al., 2011

i Information Geometry Optimization (IGO), Arnold et al., 20
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A Toy Example

Letn 2, ~ 1; 12, we want to minimize

f™xe X1 2X2 3Xx1X2

The gradient ow is the solution of the following di erential equation
— OF" »;
where we set the step size

We are interested in studying gradient ows for di erent ganeterization
and di erent statistical models
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Gradient Flows on the Independence Model

F~ o Q fXxepi™Xgep2™x2e 41 2, 121

x>

OF" o ~ 4 12 55 2 12 qeT

Gradient ow in Gradient vector in , 0:025
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©F~ « does not convergence to (local) optima, a projection over th
hyperplanes given by the constraints is required
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Natural Parameters for the Independence Model

If we restrict to positive probabilitiep AO, we can represent the interior
of the independence model as theponential family

n
pPX; o expo®) iX; Y
i1
where = ¢ InZ” < is the log partition function

The natural parameter®f the independence mod® ; represented by an

exponential family are = 1;:::; n* >R", with
. e i Xi
e
Pi Xi e e

The mapping betweemarginal probabilitieand natural parameterss
one-to-one fopp A0

i IN® jo IN1 jee~2 i
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Gradient Flows on the Independence Model

F™ o 7~ 4et 2 2 1 2 Bel 267" o
©F" ¢« E f°X E X » Cov °f; X e

Gradient ow in Gradient vectors in, 0:15
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In the parameters©F~ e« vanishes over the plateaux

L. Malago, Applications of IG to CO, 26 Sep 2014



22
Gradient Flows on the Independence Model

Marginal probabilities Natural parameters
S e K
N
2 L
o
© b2 B
o
~ ~ o
g_ =0 r F( )
rF() A
o~ rFE() F 2
© o rEC)
(=3 -
° L ‘ ‘ ‘ ‘ ‘ @ ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 -3 -2 -1 0 1 2 3
1 1

Gradient ows©F "~ ¢ dependon the parameterization

In the parameters©F~ < does not convergence to the expected
distribution x: over an optimum
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Summary of the Intro

i Iterative algorithm generate sequences of distributiorcty can be
compared to thegradient ow of F~

i The choice of thenodeland of theparameterizatiorplay a role in
terms of appearance of local minima

i Euclidean geometry does not appear to be the proper geonifetry
statistical models

We need a more general mathematical framework able to ddhl wi
non-Euclidean geometries
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The Exponential Family

In the following, we consider models in theponential familyE

m
px; o exp@ iTi"xe T
i1

i sucient statistics T "Ty " Xe®;:::; Ty Xee
i natural parameters " 1;::0; me> ~ RM
i log-partition function = e

Several statistical models belong to the exponential fgnibth in the
continuous and discrete case, among them

i the independence model
i the Gibbs distribution

i Markov random elds

i multivariate Gaussians
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Markov Random Fields

[Recall] The monomialsx «; >L, de ne a basis forf

By choosing asubsetof “x ¢ as su cient statistics, we can identify a
low-dimensional exponential family parametrized by

pP'x; ¢ exp, Q X Toe Lo L 70
>M Lo

Such models are known as

i log-liner models
i Markov random elds
i Boltzmann machines

There exists a statistical interpretation for the topolog§ the model

i The absence of edges in an undirected graphical model isnplie
conditional independence among variables
i Joint probability distributions factorize over the cliguef the graph
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Hierarchical Markov Random Fields, n 4

In some cases it may be convenient to work witkrarchical models

A hierarchical model has the property thatxf is a su cient statistic of
the exponential family then allx >L  "0e, e, must be
su cient statistics as well, where is the bitwiseimplication operator

X 1234

LN~

X123 X124 X134 X234

LEOROSON
\W
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Dual Parameterization for the Exponential Family

~ ‘

m
px; o exp@ Ti"xe .
i1

i Exponential families admit a dual parametrization to thetural
parametersgiven by theexpectation parameterwith E T

i Let' ™ e be the negative entropy gf, then and are connected
by the Legendre transform

Te 'T e T e 0
i Variable transformations are given by

© "« "©'el .

© ' e "® o1
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Variable Transformations

[Recall] LetA” Ala:::a Al wherea denotes the Kronecker product
11111111111:].‘111111111111111*[1111 11111111111111111

n times
A probability distributionp> requires2” parameters “p Xe*> to
be uniquely identi ed, with constraint® B y Bl andP,. x 1

The expectation parameters =~ «; >L, provide an equivalent
parameterization fop, and sincep x e is a pseudo-Boolean function
itself, we have
2 "A" A"
Positivity constraints and the fact that probabilities sutm one, give us
o landA" CO.

The natural parameters =~ ¢; >L, can be obtained from raw
probabilities, with the constraintg logE expP 5 ~g. X
In 2 "AN A"In
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the su cient statistics’x «; >M,
identi es a submanifold in , parametrized by ™ ¢ 5 ;0e

By the one-to-one correspondence betweeand , M can be
parametrized by " sw; *gy ¢, where in general ¥ x 0

However, the *W parameters are not free and it can be proved they ar
given byimplicit polynomial algebraiequations in sy

Due to theduality between and , we can employ anixed
parametrizationfor M and parametrize the model ds -y ;0e

[Remark] The study of statistical models using tools fronmputational
algebra is called\lgebraic Statistic{Pistone et al., 2000)
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Algebraic Statistics: Invariants in and

[Example] Letn 2, we consider the independence model parametrized
by 1; 2,0, with 12 O

The same model can be parametrized™y; »;0e, we show 1,

12
Since  A"In , by imposing 12 0 we have
In In In In
00 10 01 11

A 1 1 1 17 1z

A 1 11 1 128 A

A 2 1 1 1 1A®@ , A

A A A

5 1 1 1 159,45
11 2 121 1 2 12 71 1 2 121 1 2 a2

12 12
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Marginal Polytope

The range of the expectation parameters E T identi es a polytope
M in R™ called themarginal polytope

The marginal polytope can be obtained as the convex hull of , there
T is the vector of su cient statistics of the model

[Example] Lelm 2, T "Xj1;X1X2°®

Convex hull of

X1 X1X2 ~ .

1 137 Lk
A 1 1A Lk

1 1A 1 1.

1 14 ~ 1 1
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Marginal Polytope

The marginal polytope corresponds to the domain for thparameters in
the SR

i For the independence model 31"

i For the saturated modeW

i In the other cases, things can get very nasty, indeed thenhar of
its faces can grow more than exponentiallynin

[Example] Letn 3, consider the exponential model with su cient
statistics given by
"X1;X2; X3, X12; X23; X13°

then the number of hyperplanes bf is 16

L. Malago, Applications of IG to CO, 26 Sep 2014



. 33
Information Geometry

The geometry of statistical models is not Euclidean

We need tools fromli erential geometryto de ne notions such as
tangent vectors, shortest paths and distances betweerrilligions

Information Geometry (IG) consists of the study of statisli models as
manifolds of distributionendowed with the~isher information metric
(Amari 1982, 2001)

0T R
o)
X H
~— | )/

&
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Characterization of the Tangent Space of E

Over themanifold of distributionawe can introduce am ne chart inp
such that any density is locally represented w.r.t. to the reference
measurep by % 1

The tangent space at each poiptis de ned by
Tp ~V Ep Vv O.
Consider a curv@™ < such thatp™0- p, then %>Tp

In '@ moving coordinate systertgngent (velocity) vectorsn Ty~ . to the
curve are given by logarithmic derivative

p e d .
— | °
5. g oo
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Characterization of the Tangent Space of E

The one dimensional model

p-e exp T T e
is a curve in the manifold, with tangent (velocity) vector
R e d .
T — .
=, d

On the other side, given a vector eld, at eaghwe have a vectol” pe
tangent to some curve, then we obtain the di erential equoati

d . -

—logp™ = U'pe;
d
whose solutions are one-dimensional models in
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Natural Gradient

Let "M ;1 ¢ be astatistical manifoldendowed with a metri¢  g; , and
let F"pe M( R be asmooth function

For each vector eldU overM , the natural gradientof €F “pe, i.e., the
direction of steepest descent Bf pe is the unique vector that satis es

g©F;Us DyF;
whereDy F is the directional derivative df in the directionU

Given a coordinate systemfor M we have

& - o o

1~ « lOF"
i 1] 1 @I@J

[Remark] There is only ongnatural) gradientgiven by the geometry dfl

We use@F " « to distinguish the natural gradient from theanilla
gradient©F ™ e, i.e., the vector of partial derivatives & w.r.t.
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Geometry of the Exponential Family

In case of a nite sample space, we have
m
pPX; o exp@@ Ti"xe >R™
i1

and
K

T o v Qa ' Ti'xe E Ti+;a>R;j
i1
Since©F~ « Cov “f;T e, if f >Tp, the steepest direction is given by
f E f ,otherwise we take the projectioffof f onto Tp

A (rgnéiATiAx- E Tie;
i1l

and obtaim’Aby solving a system of linear equations
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Geometry of Statistical Models

Sincef  Ais orthogonal to |,
E"f AT E Te Cov'f A;Te O
from which we obtain, for 1;:::;m
m
Cov “f;Ti» Cov "#;Tie Q & Cov "Tj;Ti*
i1
As the Hessian matrix of ~  is invertible, we have
A Cov Ti;Tj» *Cov f;Te 1"« tOF"

By taking the projection of onto T,, we obtained thenatural gradient
©F, i.e., the gradient evaluated w.r.t. the Fisher informatimetric |
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The Big Picture

Iff Ty, the projectiom’Amay vanish, and local minima may appear
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Vanilla vs Natural Gradient; : 0:.05

Vanilla gradient©F =

©F" -
3] <& "‘;“j?‘;{// 2
ool /‘74
g, ‘*é(‘_/z/ g
NPT
L AR YN .
fel Yuieseewiyy € g
T<bvyyyl v
A Viyy vy
3 4>“"*Hk4 3
7 17>A.\*NN¥
o LIZI3avN o
i ::\\\*\\\"‘ -
-1‘.0 -O.‘S 0.6 O.é 1.6 -1‘.0 -0.‘5 0.6 0.5; 1.6
hy

hy

In both cases there exist two basins of attraction, howeQ@&r™ o

convergences toy distributions, which are local optima fét~ ¢ and
where®©F~ ,» 0
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Vanilla vs Natural Gradient: ; 0:15

Vanilla gradient©OF ~
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In both cases there exist two basins of attraction, howewethe natural
parameters®F ~ « speeds up over the plateaux
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Vanilla vs Natural Gradient

Expectation parameters

1 rFEC)

rF()

-1.0 -0.5 0.0

1

Vanilla gradient©F vs

0.5

1.0

42

Natural parameters

rF()

rF()
2 1 0
©F

The natural gradient ow is invariant to parameterization
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Stochastic Natural Gradient Descent

In the exponential family, theatural gradient desceripdating rule reads
tot o e loF” A0

Unfortunately, exact gradientsannot be computed e ciently

i in general the partition function must be evaluated

i or a change of parametrization fromto s required
However, due to the properties of the exponential familyunal gradient
can be evaluated by means @fvariances

©F" ¢« Cov “f; Te [© e« Cov "T;Te

As a consequencejochastic natural gradientan be estimated by

replacing exact gradients with empirical estimates, sa tha
tl ot Aoy “T:Te Bov °f: Te: AO
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Stochastic Natural Gradient Descent

We can now move from gradient ows to iterative algorithmsath
discretizethe ow

A naive SNGD (M. et al., 2011) implements the following psewdde
ot 0+ O
1 Start with an initial random sampl@;
2 Evaluatef for eachx >P;
3 (SubsamplePy)
4ttt oy °T;Te ov °f; Te
5 Sample fromp™x; ! te
6 Repeat2-5 until convergence

Sampling fromp™x; ! e can be done using the Gibbs sampler or other

sampling algorithms, for instance exploiting special ¢oodal structure
and propertiesof p
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Gibbs Sampler with Cooling Scheme

Input: ;N
Optional: Po;To
1: function GibbsSampler( ;N;Pg;To)

45

P natural parameters, sample size
P pool of samples, initial temperature

P random point if Po g
P initial temp, T 1 default value

P random variable

P decrease T

P add new point

2: P g
3: t 1
4: repeat
5: X RandomPge
6: T To
7. repeat
8: i Random™ 1;:::;nee
9: X i T OX13ii5Xi 10Xi 1505 Xne
10: PiTXi & Texp 2T I P oy, B
. ¢ 1, with PBi"X; 1X | X j; »
11: Xi 4 .
n L otherwise
12: T CoolingScheméTe
13: until  StoppingCriteria™)
14: P P87xe
15: t t 1

16: until t N
17: return P
18: end function
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Convergence of the Natural Gradient Flows

Theorem 1 (M. et al., FOGA 2011)
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Natural Gradient and Fitness Modeling

Theorem 2 (M. et al., CEC 2013)
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Natural Gradient and Fitness Modeling

Proof. Let A be the design matrix, e.g.,

X X X1X2

2

1 1
1 1
1

1
1
1
1 1

TS|

The least squares estimator reads

Ay "AA. ATy
1
1 1
— Q X X E- Q f xex *
N X>P N x>P

Bov'x X e éx éx 1‘%éovAf;x . éf éx
Bovx x « ‘UBovf x o7
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Model selection and Model Selection

The previous theorem determines a relationship betweegatimegression
in machine learning and stochastic gradient estimation ptirnization

i Natural gradient estimation can be solved lbyear regression

i Stochastic natural gradient performsiess modeling

i Model selectiorcan be performed bgubset selectioduring linear
regression

Forward subset selection-style algorithms can be empléyed
simultaneouslyperform model selection and gradient estimation
1 Start with no su cient statistics in the model

2 Choose among a set of candidates variables the one that wegro
the model the most

3 Evaluate the new residual vectbr fA

4 Repeat2-3 until RSS is less then a threshold or the maximum
number of variables is reached
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Choice of M in the SR

The choiceof the statistical modeM determines the landscape bf

To removethe local minima ofF overM , we can add higher-order
interactionsx to the model

[Example] In our toy example, with
f Xxe X1 2X2 3X1X2

we can remove the critical point &F in M 1 by adding the su cient
statistic X 1> to the independence model and obtain

X1 X0 "X X2 X120

The independence model issabmanifoldof the new (saturated) model:
a distributionp in the independence model has the parameters associat
to higher-order interactions set to O

~

1, 2,00 71 2; 120
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Variable transformation (Cucci et al., 2012)

An equivalent approach to change the landscapé ds based on
variables transformatianwe x the model over a set of new variables
y Tvyi;iii;yne > obtained fromx

For instance, consider the mapping x ( 'y with

Sxixg ik
Yk S

o Xk otherwise

A large class of transformations can be obtained by conadteg simple
j transformations

1

Mappingy back tox is easy, since; ,

Learninga transformation ofx which simpli es the landscape &f for a
xed M overy is equivalent to nding a good model for
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Variables transformation for the independence model

[Example] Let us apply the transformation, to X = “Xjp;X2¢
Y1 X1X2
Y2 X2

and consider the independence model oyver

Py, * exp 1y1 2y o

By representing the independence model for yheariables as a model
for x in the probability simple , we obtain the exponential model

PX; ¢ EXpT 2Xz  1XiXz T e
which can be expressed inby renaming the variables

P°X; ¢ exp’ 2X2  12X1Xp " e

The independence models forandy correspond to di erent models in
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Back to the Toy Example: Submanifolds in

Independence model: " 1; 2;0e Exponential family: = 0; 2; 12°

p'X; ¢ exp 1X1 2X2 o p°X; ¢ exp 2Xz2  12XiXa T ee

d(-1,+1)

The lines represented in blue, together with all vertices ofcorrespond
to the distributions in theintersectionof the closures of the models
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Back to the Toy Example: Gradient Fields

Letf "xe X1 2Xo 3X1X2

Independence model: " 1; 2;0e Exponential family: " 0; 2; 12°¢
PX; e exploiXy 22Xz e PX; ¢ exp’o2X2  12XiXz T e
. T ] - -
o« \ o«
4 | 4
[3Y] 1 [3Y]
[}
\—47 ! \—47
[}
8§ _1 ! 8§ _q-=---------------
o X ] o
[}
T‘J | <
[}
o ! a7
[}
o ' 1
é é 1‘ O‘ 1‘ 2‘ 3‘ é é 1‘ O‘ 1‘ 2‘ 3‘
q1 q2

The dashed lines represent the intersection of the two model
In the new model there areo critical pointsfor @F
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Back to the Toy Example: Gradient Flows

Letf "xe X1 2Xo 3X1X2

Independence model: " 1; 2;0e Exponential family: " 0; 2; 12°¢
PX; o expl iX1  2X2 T e P°X; * exp’ 2Xz2  12X1Xa T e
SO
B | 7 FEC) |
3 2 1 0 1 2 3 3 2 1 0 1 2 3
Vanilla gradientoF vs OF
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Linear Programming Relaxation

i A standard method to solve pseudo-Boolean optimization is
linearization(see Boros and Hammer, 2001 for a survey)

i Every monomiak inf is replaced by a new binary varialde

i The problem is translated into a continuous linear probleyn b
relaxing integer constraints far, i.e.,

(P) argmin Q ¢ X (LP) argmin Q c z

>| >

st.xp>" 1; 1e st.z > 1, 1

i The problem becomes linear, but additional constraints reguired
tolinkthez “x e; >L variables tothex “Xxj;:::;Xne variables
n

z Mgz Mz
i1 e
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Linear Programming Relaxation

i The new constraints areonlineay but can be modeled by linear
inequalities (see Buchheim and Rinaldi, 2007, for a review)

i [Remark] Forx; >70; 1+ a standard linearization is given by

z Bz 1 z CQ z SSS81
i i1
i Asn increases, the LP relaxation requires a good (tight) halkee
representation of the marginal polytopé

Theorem 3 (M. et al., DISCML 2009)
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Back to the Toy Example

The landscape oF " « changes according tb and the choice oM

[Example] Natural gradient ows in the are given by

1 "1 far a0
2 "1 $Ca ap g
We x M astheindependence model and study the ows for di erapt

The natural gradient vanishes over

i the vertices of the marginal polytopd

i C 7 agraiy artape’
The nature of the critical points can be determined by studying the
eigenvalue®of the Hessian

N N 2
21a ap o a;p’l 7

M
~ 2 ~
a1l 5 2@ ap*
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Back to the Toy Example: Critical Points

The solutions of the di erential equations associated tetlows can be
studied for every value of, even outside oM, where points do not
represent distributions, since positivity constraintg atiolated

Letv >~ 1; 1¢2 be a vertex oM, the eigenvalues dfl are

1 2viapVvy are

2 2V appvy aze
According to the signs of; and », each vertex can be either a stable
node SN), an unstable node ( ) or a saddle point (SP)

Forc ~ ay~aip, aj~ap*'
Ya

A2 ) 202
1;2 ap a;* ap arsap

Follows thatc is saddle point for
"L RS DL S " RHBHS 81oB AL Sy in the other cases, it
is center ()
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Back to the Toy Example: Bifurcation Diagram

We can interpret@;,Sas the
strength of the interaction
amongx; and X

For 1, 0, ¢ is a saddle
point in the shaded regions,
where there exist
i strong interactions,
812A81S 812AHS
i.,e.c>M
i weak interactions,

81,5@81S $1,S@BS
i.e.,c M

In the remaining casesis a
center

Projection of the bifurcation diagram

T

2;a2° over” 1;
and0OBaj;; @2

60

2¢ for arbitrary aj;ap

2

1.5p

1F

0.5r

e o

-05r

At

-15¢

|

=1,
a,,=1s

*la,ma))

-2
-2

-1

0

m

1

2

The coordinates of ¢ depends onajz, c is a SP
on the dashed lines and a on the dotted line;

for ai2
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61

Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over 1; »¢ for xed ai

SN\ | v pviig v

N7 777}
N '442% :
N ‘W/ /,

WA ) ;;

and 2 SPs

Aalz 0 1 SN, 1

No critical points besides the vertices
of M, all trajectories inM converge to
the global optimum
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2

-

AN —
=
NN
N
“k i
NN

=
N
"\
N
\‘\\ NN
§§k\§ | () |
r% 1

2
Aalz 0:85 1 SN, 1

and 3 SPs

The interaction is weak,c is a SP and
is outside ofM so that all ows
converge to the global optimum
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Natural Gradient Flows over 1; »¢ for xed ai

Back to the Toy Example (M. et al., 2014)

sand 1 SP

5¢ 2 SNs, 2

aiz

SPs and 1

1:25 1SN, 1,

aiz

The interaction is strong,c is a SP

The interaction is not strong enough
to have c>M and to generate local
minima, we have period solutions

and belongs toM, ows converge to
either local or global optimum
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