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The following slide contains spoilers!

In this lecture we discuss�rst order optimization overmanifolds of
distributions

We optimize functionals de�ned over statistical manifoldsby means of
(stochastic) natural gradientdescent

We focus ondiscrete statistical modelsin the exponential family, even if
most of the discussion applies also to the continuous case
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Motivation

The main motivation isstochastic optimization, i.e., randomized search
methods which introduce randomness into the search process

In particular we are interested inmodel-based optimization, i.e., a broad
family of algorithms which employ statistical models to guide the search
for the optimum of a function

Model-based algorithms often generate minimizing sequences of
probability distributions in a statistical model
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Some Notation

i f ˆx • � 
 � R the objective function

i 
 a �nite search search space

i pˆx • a probability distribution over the sample space


i p0 the uniform distribution over


i � the probability simplex

i M � ˜ pˆx ; � • � � >� • ` � a parametrized statistical model

i � a parameter vector forp
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Stochastic Relaxation

Consider the minimization problem

(P) min
x>


f ˆx •

Let F ˆp• � Ep� f � , we look for the minimum off by optimizing the
Stochastic Relaxation(SR) of f

(SR) inf
p>M

F ˆp•

[Remark] We takeinf , since in generalM may not be closed

We getcandidatesolutions for P by sampling optimal solutions of the SR

We introduce a chart� overM � ˜ pˆx ; � • � � >� • , let F ˆ � • � E� � f � , we
have aparametric representation(in coordinates) of the SR

(SR) inf
� >�

F ˆ� •
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A Few Remarks

We move the search to the space of probability distributions, from a
discrete optimization problem over
 to a continuous optimization
problem overM

In the parametric representation ofF , the parameters� become the new
variables of the SR

Since� >� , we may have a constrained formulation of the SR

[Disclaimer] The SRdoes notprovidelower boundsfor P, indeed

min
x >


f ˆx • BF ˆp• Bmax
x >


f ˆx •

Let M � � , minx >
 f ˆx • � minp>� F ˆp•

More in general, forM ` � , minx >
 f ˆx • B inf p>M F ˆp•
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Closure of M

We denote withM the topological closureof M , i.e., M together with
the limits of (weakly convergent) sequences of distributions in M

Moreover, we supposeM is compactso that by the extreme value
theoremF ˆp• attains its in�mum overM
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Equivalence of P and SR

Let us denote the optimal solutions

i x ‡ >
 ‡ � arg min x>
 f ˆx •

i p‡ >P‡ � arg min p>M F ˆp•

The SR is equivalent to P ifp‡ˆx ‡• � 1, i.e., the probability of sampling
optimal solutions of P from optimal solutions of SR is equal to 1

In other words, there must exists a sequence˜ pt • in M such that

lim
t �ª

pt ˆx ‡• � 1

A su�cient condition for the equivalence of SR and P is that all Dirac
distribution � x are included inM
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�Why are we doing this?�

Let us clarify some points

i Let k be the cardinality of
 , to parametrize� we needk � 1
parameters

i Minimizing F ˆp• with p >� is as computationally expensive as an
exhaustive search

And so, why going from
 to M ?

i In practice we restrict the search to some lower-dimensional model

i The equivalence of P and SR can be easily guaranteed by low
dimensional models

i We can develop e�cient blackbox optimization algorithms

i It is possible to identify (e.g., learn) submodels for which�nice�
properties hold (e.g., gradient descent converges to global optimum)
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Which Model to Choose?

[Remark] The landscape ofF ˆp• depends on the choice ofM , i.e., the
number of local minima ofF ˆp• depends onM

Often it is convenient to work withgraphical models

i There exists an interpretation of the model in terms of conditional
independence assumptions among variables

i We can de�ne hierarchical structures and control model dimension

i There is a strong literature about estimation, sampling, learning, ...

In the following we work (mainly) with exponential families
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The Gibbs or Boltzmann Distribution

i The Gibbs distributionis the one-dimensional exponential family

pˆx ; � • �
e� �f ˆ x •

Eq� e� �f ˆ x • �
qˆx •; � A0

i f ˆx • the energy function
i � the inverse temperature
i qˆx • the reference measure

i The set of distributions isnot weakly closed
i Supposef ˆx • C0 and f ˆx • � 0 for somex >
 , but not everywhere

lim
� � 0

e� �f ˆ x • � qˆx • lim
� � 0

Eq� e� �f ˆ x • � � 1

lim
� �ª

e� �f ˆ x • �
¢̈
¨
¦
¨̈
¤

qˆx • if f ˆx • � 0;

0 otherwise
lim

� �ª
Eq� e� �f ˆ x • � � Q


 ‡

qˆx •
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Closure of the Gibbs Distribution

lim
� � 0

pˆx ; � • � qˆx •

lim
� �ª

pˆx ; � • �
qˆx •

P 
 ‡ qˆx •

The Gibbs distribution is in principle an optimal choice forthe SR, indeed

i The limit for � � ª has support over the minima off , and in
particular forqˆx• � p0, it is the uniform distribution� 
 ‡

i Since
©F ˆ� • � � Var � ˆ f • @0

F ˆ� • decreases monotonicallyas � � ª

i The Gibbs distribution satis�es the principle of maximum entropy

However, evaluating the partition function iscomputationally infeasible
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Pseudo-Boolean Optimization

In the following we restrict to
 � ˜ � 1; � 1• n , and we use theharmonic
encoding˜ � 1; � 1• for a binary variable

� 10 � � 1 � 11 � � 1

A pseudo-Boolean functionf is a real-valued mapping

f ˆx • � 
 � ˜ � 1; � 1• n � R

Any f can be expanded uniquely as a square free polynomial

f ˆx• � Q
� >L

c� x � ;

by employing amulti-indexnotation. Let L � ˜ 0; 1• n , then
� � ˆ � 1; : : : ; � n • >L uniquely identi�es the monomialx � by

� (
n

M
i � 1

x � i
i

The degreeof the monomials represents the order of the interactions inf
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Monomial Representation of PS Functions

Let An � A1 a : : : a A1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, wherea denotes the Kronecker product and

A1 � �

0 1

� � 1 � 1
� � 1 � 1

	

let a � ˆ f ˆx •• x >
 , we haveAnc � a, with c � ˆc� • � >L and c � 2� n Ana

[Example] In case of two variablesx � ˆx1; x2•, we have

f ˆx • � c0 � c1x1 � c2x2 � c12x1x2

x1 x2 f ˆx •

� 1 � 1 a��
� 1 � 1 a��
� 1 � 1 a��
� 1 � 1 a��

<@@@@@@@>

c0

c1

c2

c12

=AAAAAAA?

�
1
4

�

<@@@@@@@>

00 10 01 11

�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1

=AAAAAAA?

<@@@@@@@>

a��

a��

a��

a��

=AAAAAAA?
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The Independence Model

Let M 1 be theindependence modelfor X � ˆX 1; : : : ; X n •

M 1 � ˜ p � pˆx • �
n

M
i � 1

pi ˆx i ••

with marginal probabilitiespi ˆx i • � PˆX i � x i •

We parametrizeM 1 using� 1 Bernoulli distributions forX i

pˆx ; � • �
n

M
i � 1

� ˆ 1� x•~2
i ˆ1 � � i •

ˆ 1� x•~2

�
n

M
i � 1

ˆ2� i x i � x i � 1• ~2

with � � ˆ � 1; : : : ; � n • >�0; 1� n and

� i � PˆX i � � 1•

1 � � i � PˆX i � � 1•
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Marginal Parameters for the Independence Model

� 01 � 11

� 10� 00

� 2

� 1

M 1 is a n-dimensional manifold embedded in the2n � 1 dimensional
probability simplex�
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Stochastic Relaxation: Who?

The SR can be solved in di�erent ways

i Sampling, Selection and Estimation paradigm (EDAs, Larrañaga and
Lozano, 2002, CE method, Rubinstein, 1997)

i Fitness Modeling (DEUM, Shakya et al., 2005)
i Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001)

i GAs (Holland, 1975), ACO (Dorigo, 1992), ESs (Rechenberg, 1960)

i Boltzmann distribution and Gibbs sampler (Geman and Geman,
1984)

i Simulated Annealing and Boltzmann Machines (Aarts and Korst,
1989)

i Method of the Moments (SDP, Meziat et al., 2001)
i LP relaxation in pseudo-Boolean optimization (Boros and Hammer,

2001)

i ...and many others
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Gradient Descent

In the following we will focus on gradient descent techniques of the form

� t � 1 � � t � � ©F ˆ � •; � A0

In particular we refer to gradient-based algorithms such as

i Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES),
Hansen et al., 2001

i Natural Evolutionary Strategies (NES), Wierstra et al., 2008
i Stochastic Natural Gradient Descent (SNGD), M. et al., 2011
i Information Geometry Optimization (IGO), Arnold et al., 2011
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A Toy Example

Let n � 2, 
 � ˜ � 1; � 1• 2, we want to minimize

f ˆx • � x1 � 2x2 � 3x1x2

x1 x2 f ˆx •

� 1 � 1 6
� 1 � 1 � 4
� 1 � 1 � 2
� 1 � 1 0

��

��

��

��

The gradient �ow is the solution of the following di�erential equation
_� � ©F ˆ � •;

where we set the step size� � �

We are interested in studying gradient �ows for di�erent parameterization
and di�erent statistical models
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Gradient Flows on the Independence Model

F ˆ � • � Q
x >


f ˆx •p1ˆx1•p2ˆx2• � � 4� 1 � 2� 2 � 12� 1� 2

©F ˆ� • � ˆ � 4 � 12� 2; � 2 � 12� 1•T

Gradient �ow in �
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r F ( � )

Gradient vector in� , � � 0:025
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©F ˆ� • does not convergence to (local) optima, a projection over the
hyperplanes given by the constraints is required
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Natural Parameters for the Independence Model

If we restrict to positive probabilitiesp A0, we can represent the interior
of the independence model as theexponential family

pˆx ; � • � expœ
n

Q
i � 1

� i x i �  ˆ � •¡

where ˆ � • � ln Z ˆ � • is the log partition function

The natural parametersof the independence modelM 1 represented by an
exponential family are� � ˆ � 1; : : : ; � n • >Rn , with

pi ˆx i • �
e� i x i

e� i � e� � i

The mapping betweenmarginal probabilitiesand natural parametersis
one-to-one forp A0

� i � ˆ lnˆ � i • � lnˆ1 � � i •• ~2 � i �
e� i

e� i � e� � i
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Gradient Flows on the Independence Model

F ˆ � • � ˆ � 4e� 1 � � 2 � 2e� � 1 � � 2 � 6e� 1 � � 2 •~Z ˆ � •

©F ˆ � • � E� � f ˆX � E� �X �•� � Cov� ˆ f; X •

Gradient �ow in �

-3 -2 -1 0 1 2 3

-3
-2

-1
0
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� 2
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4

r F ( � )

Gradient vectors in� , � � 0:15
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0
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3

q1

q 2

In the � parameters,©F ˆ � • vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities�

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

� 1

�
2

-4

-2

0

2

4

6

r F ( � )
r F ( � )

Natural parameters�
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Gradient �ows©F ˆ� • dependon the parameterization

In the � parameters,©F ˆ � • does not convergence to the expected
distribution � x ‡ over an optimum
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Summary of the Intro

i Iterative algorithm generate sequences of distributions which can be
compared to thegradient �ow of F ˆ � •

i The choice of themodeland of theparameterizationplay a role in
terms of appearance of local minima

i Euclidean geometry does not appear to be the proper geometryfor
statistical models

We need a more general mathematical framework able to deal with
non-Euclidean geometries
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The Exponential Family

In the following, we consider models in theexponential familyE

pˆx ; � • � expŒ
m

Q
i � 1

� i Ti ˆx • �  ˆ � •‘

i su�cient statistics T � ˆT1ˆx •; : : : ; Tm ˆx ••

i natural parameters� � ˆ � 1; : : : ; � m • >� ` Rm

i log-partition function ˆ � •

Several statistical models belong to the exponential family, both in the
continuous and discrete case, among them

i the independence model

i the Gibbs distribution

i Markov random �elds

i multivariate Gaussians
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Markov Random Fields

[Recall] The monomials̃x � • ; � >L , de�ne a basis forf

By choosing asubsetof ˜ x � • as su�cient statistics, we can identify a
low-dimensional exponential family parametrized by�

pˆx ; � • � exp
’

”
Q

� >M ` L 0

� � x � �  ˆ � •
“

•
; L 0 � L � ˜ 0•

Such models are known as

i log-liner models
i Markov random �elds
i Boltzmann machines

There exists a statistical interpretation for the topologyof the model

i The absence of edges in an undirected graphical model implies
conditional independence among variables

i Joint probability distributions factorize over the cliques of the graph
L. Malagò, Applications of IG to CO, 26 Sep 2014
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Hierarchical Markov Random Fields, n � 4

In some cases it may be convenient to work withhierarchical models

A hierarchical model has the property that ifx � is a su�cient statistic of
the exponential family then all̃x � � � >L � ˜ 0• , � � � • , must be
su�cient statistics as well, where� is the bitwiseimplication operator

X 3X 2X 1 X 4

X 13X 12 X 14 X 23 X 24 X 34

X 123 X 124 X 134 X 234

X 1234
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Dual Parameterization for the Exponential Family

pˆx ; � • � expŒ
m

Q
i � 1

� i Ti ˆx • �  ˆ � •‘

i Exponential families admit a dual parametrization to thenatural
parameters, given by theexpectation parameterswith � � E� � T �

i Let ' ˆ � • be the negative entropy ofp, then � and � are connected
by the Legendre transform

 ˆ � • � ' ˆ � • � `� ; � e� 0

i Variable transformations are given by

� � ©�  ˆ � • � ˆ©� ' • � 1ˆ � •

� � ©� ' ˆ � • � ˆ©�  • � 1ˆ � •
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Variable Transformations

[Recall] LetAn � A1 a : : : a A1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, wherea denotes the Kronecker product

A probability distributionp >� requires2n parameters� � ˆpˆx •• x >
 to
be uniquely identi�ed, with constraints0 B� x B1 and P x >
 � x � 1

The expectation parameters� � ˆ � � •; � >L , provide an equivalent
parameterization forp, and sincepˆx • is a pseudo-Boolean function
itself, we have

� � 2� n An � � � An �

Positivity constraints and the fact that probabilities sumto one, give us
� 0 � 1 and An � C0.

The natural parameters� � ˆ � � •; � >L , can be obtained from raw
probabilities, with the constraint� 0 � � logE� � expP � >L �˜ 0• � � x � �

ln � � 2� nAn � � � An ln �

� � ˆ •
L. Malagò, Applications of IG to CO, 26 Sep 2014
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the su�cient statistics˜ x � • ; � >M ,
identi�es a submanifold in� , parametrized by� � ˆˆ � • � >M ; 0•

By the one-to-one correspondence between� and � , M can be
parametrized by� � ˆ � � >M ; � ‡

� ¶M •, where in general� ‡
� ¶M x 0

However, the� ‡
� ¶M parameters are not free and it can be proved they are

given byimplicit polynomial algebraicequations in� � >M

Due to theduality between� and � , we can employ amixed
parametrizationfor M and parametrize the model asˆ � � >M ; 0•

[Remark] The study of statistical models using tools from computational
algebra is calledAlgebraic Statistics(Pistone et al., 2000)
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Algebraic Statistics: Invariants in � and �

[Example] Letn � 2, we consider the independence model parametrized
by ˆ � 1; � 2; 0•, with � 12 � 0

The same model can be parametrized byˆ � 1; � 2; 0•, we show� 12 � � 1� 2

Since� � An ln � , by imposing� 12 � 0 we have

ln � �� � ln � �� � ln � �� � ln � ��

� �� � �� � � �� � ��

<@@@@@@@>

� ��

� ��

� ��

� ��

=AAAAAAA?

�
1
4

�

<@@@@@@@>

00 10 01 11

�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1
�� � 1 � 1 � 1 � 1

=AAAAAAA?

<@@@@@@@>

1
� 1

� 2

� 12

=AAAAAAA?

ˆ1 � � 1 � � 2 � � 12•ˆ 1 � � 1 � � 2 � � 12• � ˆ1 � � 1 � � 2 � � 12•ˆ 1 � � 1 � � 2 � � 12•

� 12 � � 1� 2
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Marginal Polytope

The range of the expectation parameters� � E� � T � identi�es a polytope
M in Rm called themarginal polytope

The marginal polytope can be obtained as the convex hull ofT ˆ 
 •, there
T is the vector of su�cient statistics of the model

[Example] Letn � 2, T � ˆx1; x1x2•

A �

<@@@@@@@>

x1 x1x2

�� � 1 � 1
�� � 1 � 1
�� � 1 � 1
�� � 1 � 1

=AAAAAAA?

Convex hull of

ˆ � 1; � 1•

ˆ � 1; � 1•

ˆ � 1; � 1•

ˆ � 1; � 1•
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Marginal Polytope

The marginal polytope corresponds to the domain for the� parameters in
the SR

i For the independence modelM � � � 1; 1� n

i For the saturated modelM � �

i In the other cases, things can get very �nasty�, indeed the number of
its faces can grow more than exponentially inn

[Example] Letn � 3, consider the exponential model with su�cient
statistics given by

˜ x1; x2; x3; x12; x23; x13•

then the number of hyperplanes ofM is 16
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Information Geometry

The geometry of statistical models is not Euclidean

We need tools fromdi�erential geometryto de�ne notions such as
tangent vectors, shortest paths and distances between distributions

Information Geometry (IG) consists of the study of statistical models as
manifolds of distributionsendowed with theFisher information metric
(Amari 1982, 2001)
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Characterization of the Tangent Space of E

Over themanifold of distributionswe can introduce ana�ne chart in p
such that any densityq is locally represented w.r.t. to the reference
measurep by q

p � 1

The tangent space at each pointp is de�ned by

Tp � ˜ v � Ep� v� � 0•

Consider a curvepˆ � • such thatpˆ0• � p, then _p
p >Tp

In a moving coordinate system,tangent (velocity) vectorsin Tpˆ � • to the
curve are given by logarithmic derivative

_pˆ � •
pˆ � •

�
d
d�

logpˆ � •
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Characterization of the Tangent Space of E

The one dimensional model

pˆ � • � exp˜ �T �  ˆ � ••

is a curve in the manifold, with tangent (velocity) vector

_pˆ � •
pˆ � •

� T �
d
d�

 ˆ � •

On the other side, given a vector �eld, at eachp we have a vectorUˆp•
tangent to some curve, then we obtain the di�erential equation

d
d�

logpˆ � • � Uˆp•;

whose solutions are one-dimensional models in�
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Natural Gradient

Let ˆM ; I • be astatistical manifoldendowed with a metricI � � gij � , and
let F ˆp• � M ( R be a smooth function

For each vector �eldU overM , the natural gradientof Ç©F ˆp•, i.e., the
direction of steepest descent ofF ˆp• is the unique vector that satis�es

gˆ Ç©F; U• � DU F;

whereDU F is the directional derivative ofF in the directionU

Given a coordinate system� for M we have

Ç©F ˆ� • �
n

Q
i � 1

n

Q
j � 1

gij @F
@�i

@
@�j

� I ˆ � • � 1©F ˆ� •

[Remark] There is only one(natural) gradientgiven by the geometry ofM

We useÇ©F ˆ� • to distinguish the natural gradient from thevanilla
gradient©F ˆ � •, i.e., the vector of partial derivatives ofF w. r. t. �
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Geometry of the Exponential Family

In case of a �nite sample space
 , we have

pˆx ; � • � expŒ
m

Q
i � 1

� i Ti ˆx • �  ˆ � •‘ � >Rm

and

T � � œv � v �
k

Q
i � 1

ai ˆTi ˆx • � E� � Ti �• ; ai >R¡

Since©F ˆ� • � Cov� ˆ f; T •, if f >Tp, the steepest direction is given by
f � E� � f � , otherwise we take the projectionÂf of f onto Tp

Âf �
m

Q
i � 1

Âai ˆTi ˆx • � E� � Ti �• ;

and obtain Âf by solving a system of linear equations
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Geometry of Statistical Models

Sincef � Âf is orthogonal to Tp

E� �ˆ f � Âf � •ˆ T � E� � T �•� � Cov� ˆ f � Âf � ; T• � 0;

from which we obtain, fori � 1; : : : ; m

Cov� ˆ f; T i • � Cov� ˆ Âf � ; Ti • �
m

Q
j � 1

Âaj Cov� ˆTj ; Ti •

As the Hessian matrix of ˆ � • is invertible, we have

Âa � �Cov� ˆTi ; Tj •� � 1 Cov� ˆ f; T • � I ˆ � • � 1©F ˆ� •

In casef >Spañ T1; : : : ; Tm • , then Âf � � f

By taking the projection off onto Tp, we obtained thenatural gradient
Ç©F , i.e., the gradient evaluated w.r.t. the Fisher information metric I
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The Big Picture

If f ¶ Tp, the projection Âf may vanish, and local minima may appear
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Vanilla vs Natural Gradient: � ; � � 0:05

Vanilla gradient ©F ˆ � •
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Natural gradient Ç©F ˆ � •
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In both cases there exist two basins of attraction, howeverÇ©F ˆ� •
convergences to� x distributions, which are local optima forF ˆ � • and
whereÇ©F ˆ� x • � 0

L. Malagò, Applications of IG to CO, 26 Sep 2014



41
Vanilla vs Natural Gradient: � ; � � 0:15

Vanilla gradient ©F ˆ � •
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Natural gradient Ç©F ˆ � •
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In both cases there exist two basins of attraction, however in the natural
parametersÇ©F ˆ� • �speeds up� over the plateaux
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Vanilla vs Natural Gradient

Expectation parameters�
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Vanilla gradient ©F vs Natural gradient Ç©F

The natural gradient �ow is invariant to parameterization
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Stochastic Natural Gradient Descent

In the exponential family, thenatural gradient descentupdating rule reads

� t � 1 � � t � �I ˆ � • � 1©F ˆ� •; � A0

Unfortunately, exact gradientscannot be computed e�ciently

i in general the partition function must be evaluated

i or a change of parametrization from� to � is required

However, due to the properties of the exponential family, natural gradient
can be evaluated by means ofcovariances

©F ˆ� • � Cov� ˆ f; T • I ˆ � • � Cov� ˆT ; T •

As a consequence,stochastic natural gradientcan be estimated by
replacing exact gradients with empirical estimates, so that

� t � 1 � � t � � ÄCov� t ˆT ; T • � 1 ÄCov� t ˆ f; T •; � A0
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Stochastic Natural Gradient Descent

We can now move from gradient �ows to iterative algorithms that
discretizethe �ow

A naïve SNGD (M. et al., 2011) implements the following pseudo-code

0 t � 0; � t � 0

1 Start with an initial random samplePt

2 Evaluatef for eachx >Pt

3 (SubsamplePt )

4 � t � 1 � � t � � ÄCov� ˆT ; T • � 1 ÄCov� ˆ f; T •

5 Sample frompˆx ; � t � 1•

6 Repeat2-5 until convergence

Sampling frompˆx ; � t � 1• can be done using the Gibbs sampler or other
sampling algorithms, for instance exploiting special conditional structure
and propertiesof p
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Gibbs Sampler with Cooling Scheme

Input: � ; N P natural parameters, sample size
Optional: P0 ; T0 P pool of samples, initial temperature
1: function GibbsSampler(� ; N; P 0 ; T0)
2: P � g
3: t � 1
4: repeat
5: x � RandomˆP0 • P random point if P0 � g
6: T � T0 P initial temp, T � 1 default value
7: repeat
8: i � Randomˆ˜ 1; : : : ; n •• P random variable
9: x � i � ˆ x1 ; : : : ; x i � 1 ; x i � 1 ; : : : ; x n •

10: pi ˆ x i Sx � i ; � • � 1
1� exp ˜ 2T � 1 x i P � >M i

� � � i x � � i •

11: x i �
¢̈
¨
¦
¨̈
¤

� 1; with Pi ˆX i � 1SX � i � x � i ; � •
� 1; otherwise

12: T � CoolingSchemê T • P decrease T
13: until StoppingCriteriaˆ )
14: P � P 8 ˜ x • P add new point
15: t � t � 1
16: until t � N
17: return P
18: end function

L. Malagò, Applications of IG to CO, 26 Sep 2014



46
Convergence of the Natural Gradient Flows

Theorem 1 (M. et al., FOGA 2011)

If the su�cient statistics ˜ x � • of the exponential family

pˆx; � • � exp
’

”
Q

� >M ` L 0

� � x � �  ˆ � •
“

•

form a basis for
f ˆx • � Q

� >I
c� x �

i.e., I � ˜ 0• ` M , then the natural gradient �ows from every distributionp
in the exponential family converge to the global optimum of the SR
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Natural Gradient and Fitness Modeling

Theorem 2 (M. et al., CEC 2013)

If the su�cient statistics ˜ x � • of the exponential family

pˆx; � • � exp
’

”
Q

� >M ` L 0

� � x � �  ˆ � •
“

•

are centered in� , i.e., E� � x � � � 0 for every� >M , then the least squares
estimatorÂaN of the regression model

Âf ˆx • � Q
� >M ` L 0

a� x �

estimated from a random sampleP i. i. d. � pˆx; � • converges to the natural
gradient Ç©F ˆ� •, asN � ª
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Natural Gradient and Fitness Modeling

Proof. Let A be the design matrix, e.g.,

A �

<@@@@@@@>

x1 x2 x1x2 : : :

������ � 1 � 1 � 1 : : :

������ � 1 � 1 � 1 : : :

������ � 1 � 1 � 1 : : :

� � � � �

=AAAAAAA?
The least squares estimator reads

ÂaN � ˆA—A• � 1A—y

� �
1
N

Q
x >P

x � x � 	
� 1

Œ
1
N

Q
x >P

f ˆx •x � ‘

� � ÄCovˆx � ; x � • � ÂE�x � � ÂE�x � � �
� 1

‰ÄCovˆf; x � • � ÂE� f � ÂE�x � � Ž

� � ÄCovˆx � ; x � •�
� 1

‰ÄCovˆf; x � •Ž
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Model selection and Model Selection

The previous theorem determines a relationship between linear regression
in machine learning and stochastic gradient estimation in optimization

i Natural gradient estimation can be solved bylinear regression

i Stochastic natural gradient performs�tness modeling

i Model selectioncan be performed bysubset selectionduring linear
regression

Forward subset selection-style algorithms can be employedto
simultaneouslyperform model selection and gradient estimation

1 Start with no su�cient statistics in the model

2 Choose among a set of candidates variables the one that improves
the model the most

3 Evaluate the new residual vectorf � Âf

4 Repeat2-3 until RSS is less then a threshold or the maximum
number of variables is reached
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Choice of M in the SR

The choiceof the statistical modelM determines the landscape ofF

To removethe local minima ofF overM , we can add higher-order
interactionsx � to the model

[Example] In our toy example, with

f ˆx • � x1 � 2x2 � 3x1x2

we can remove the critical point ofÇ©F in M 1 by adding the su�cient
statistic X 12 to the independence model and obtain

˜ X 1; X 2• � ˜ X 1; X 2; X 12•

The independence model is asubmanifoldof the new (saturated) model:
a distributionp in the independence model has the parameters associated
to higher-order interactions set to 0

ˆ � 1; � 2; 0• � ˆ � 1; � 2; � 12•
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Variable transformation (Cucci et al., 2012)

An equivalent approach to change the landscape ofF is based on
variables transformation: we �x the model over a set of new variables
y � ˆy1; : : : ; yn • >
 obtained fromx

For instance, consider the mapping� ij � 
 � 
 � x ( y with

yk �
¢̈
¨
¦
¨̈
¤

xkx j if k � i

xk otherwise

A large class of transformations can be obtained by concatenating simple
� ij transformations

Mappingy back to x is easy, since� ij � � � 1
ij

Learninga transformation ofx which simpli�es the landscape ofF for a
�xed M overy is equivalent to �nding a good model forx
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Variables transformation for the independence model

[Example] Let us apply the transformation� 12 to x � ˆx1; x2•

y1 � x1x2

y2 � x2

and consider the independence model overy

pˆy ; � • � exp˜ � 1y1 � � 2y2 �  ˆ � ••

By representing the independence model for they variables as a model
for x in the probability simple� , we obtain the exponential model

pˆx ; � • � exp˜ � 2x2 � � 1x1x2 �  ˆ � ••

which can be expressed in� by renaming the variables

pˆx ; � • � exp˜ � 2x2 � � 12x1x2 �  ˆ � ••

The independence models forx andy correspond to di�erent models in�
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Back to the Toy Example: Submanifolds in �

Independence model:� � ˆ � 1 ; � 2 ; 0•

pˆx ; � • � exp˜ � 1x1 � � 2x2 �  ˆ � ••

d
(+1,+1)

d
(-1,-1)

d
(-1,+1)

d
(+1,-1)

Exponential family: � � ˆ 0; � 2 ; � 12 •

pˆx ; � • � exp˜ � 2x2 � � 12 x1x2 �  ˆ � ••

d
(+1,+1)

d
(-1,-1)

d
(-1,+1)

d
(+1,-1)

The lines represented in blue, together with all vertices of� , correspond
to the distributions in theintersectionof the closures of the models
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Back to the Toy Example: Gradient Fields

Let f ˆx • � x1 � 2x2 � 3x1x2

Independence model:� � ˆ � 1 ; � 2 ; 0•

pˆx ; � • � exp˜ � 1x1 � � 2x2 �  ˆ � ••
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Exponential family: � � ˆ 0; � 2 ; � 12 •

pˆx ; � • � exp˜ � 2x2 � � 12 x1x2 �  ˆ � ••
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The dashed lines represent the intersection of the two models in �
In the new model there areno critical pointsfor Ç©F
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Back to the Toy Example: Gradient Flows

Let f ˆx • � x1 � 2x2 � 3x1x2

Independence model:� � ˆ � 1 ; � 2 ; 0•

pˆx ; � • � exp˜ � 1x1 � � 2x2 �  ˆ � ••
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Exponential family: � � ˆ 0; � 2 ; � 12 •

pˆx ; � • � exp˜ � 2x2 � � 12 x1x2 �  ˆ � ••
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Vanilla gradient©F vs Natural gradientÇ©F
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Linear Programming Relaxation

i A standard method to solve pseudo-Boolean optimization is
linearization(see Boros and Hammer, 2001 for a survey)

i Every monomialx � in f is replaced by a new binary variablez�

i The problem is translated into a continuous linear problem by
relaxing integer constraints forz, i.e.,

(P) arg min Q
� >I

c� x � � (LP) arg min Q
� >I

c� z�

s.t. x i >˜ � 1; � 1• s.t. z� >� � 1; � 1�

i The problem becomes linear, but additional constraints arerequired
to link the z � ˆx � •; � >L variables to thex � ˆx1; : : : ; xn • variables

z� �
n

M
i � 1

z� i
i � M

˜ i �� i � 1•
zi
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Linear Programming Relaxation

i The new constraints arenonlinear, but can be modeled by linear
inequalities (see Buchheim and Rinaldi, 2007, for a review)

i [Remark] Forx i >˜ 0; 1• a standard linearization is given by

z� Bzi ¦ i � � i � 1 z� C Q
i �� i � 1

zi � SS� SS1 � 1

i As n increases, the LP relaxation requires a good (tight) half-space
representation of the marginal polytopeM

Theorem 3 (M. et al., DISCML 2009)

The LP relaxation in the new variablesz corresponds to the SR in�

F ˆ � • � E� � Q
� >L

c� x � 	 � Q
� >L

c� E� � x � � � F ˆ � • � Q
� >L

c� � � � Q
� >L

c� z�

Solving the LP relaxation we obtain a lower bound for the SR since it is
usually de�ned over an approximation of the marginal polytope M
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Back to the Toy Example

The landscape ofF ˆ � • changes according tof and the choice ofM

[Example] Natural gradient �ows in the� are given by

_� 1 � ˆ1 � � 2
1•ˆ a1 � a12� 2•

_� 2 � ˆ1 � � 2
2•ˆ a2 � a12� 1•

We �x M as the independence model and study the �ows for di�erenta12

The natural gradient vanishes over

i the vertices of the marginal polytopeM
i c � ˆ � a2~a12; � a1~a12•T

The nature of the critical points can be determined by studying the
eigenvaluesof the Hessian

M � �
� 2� 1ˆa1 � a12� 2• a12ˆ1 � � 2

1•
a12ˆ1 � � 2

2• � 2� 2ˆa2 � a12� 1•
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Back to the Toy Example: Critical Points

The solutions of the di�erential equations associated to the �ows can be
studied for every value of� , even outside ofM, where points do not
represent distributions, since positivity constraints are violated

Let v >˜ � 1; � 1• 2 be a vertex ofM, the eigenvalues ofH are

� 1 � � 2v1ˆa12v2 � a1•

� 2 � � 2v2ˆa12v1 � a2•

According to the signs of� 1 and � 2, each vertex can be either a stable
node (SN), an unstable node (UN) or a saddle point (SP)

For c � ˆ � a2~a12; � a1~a12•T

� 1;2 � �
¼

ˆa2
12 � a2

2•ˆ a2
12 � a2

1•~a2
12

Follows thatc is saddle point for
ˆSa12SCSa1S, Sa12SCSa2S•- ˆSa12SBSa1S, Sa12SBSa2S•, in the other cases, it
is center (C)

L. Malagò, Applications of IG to CO, 26 Sep 2014



60
Back to the Toy Example: Bifurcation Diagram

We can interpretSa12Sas the
strengthof the interaction
amongx1 and x2

For Sa12Sx 0, c is a saddle
point in the shaded regions,
where there exist

i strong interactions,
Sa12SASa1S, Sa12SASa2S,
i.e. c >M

i weak interactions,
Sa12S@Sa1S, Sa12S@Sa2S,
i.e., c ¶ M

In the remaining casesc is a
center

Projection of the bifurcation diagram
ˆ � 1 ; � 2 ; a12 • over ˆ � 1 ; � 2 • for arbitrary a1 ; a2

and 0 B a12 @ ª
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The coordinates of c depends ona12 , c is a SP
on the dashed lines and aC on the dotted line;
for a12 � ª , c converges to the center ofM
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over̂ � 1 ; � 2• for �xed a12
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ˆa12 � 0• 1 SN, 1 UN and 2 SPs

No critical points besides the vertices
of M, all trajectories in M converge to
the global optimum
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The interaction is weak,c is a SP and
is outside ofM so that all �ows
converge to the global optimum
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over̂ � 1 ; � 2• for �xed a12
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The interaction is not strong enough
to have c >M and to generate local
minima, we have period solutions
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