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Abstract

Stochastic relaxation is an approach to optimization whichaims at finding the minimum of a func-
tion by identifying a proper sequence of probability distributions, in a given model, that minimize
the expected value of the given function. In this paper we present two algorithms, in the stochastic
relaxation framework, for the optimization of real-valuedfunctions defined over binary variables:
Stochastic Gradient Descent (SGD) and Stochastic Natural Gradient Descend (SNDG). These algo-
rithms use an exponential family to sample points from the search space and search for the optimum.
Due to the properties of the exponential family, both gradient and natural gradient can be evaluated
in terms of covariances between the function and the sufficient statistics of the exponential family.
This allows gradient based techniques to be applied in orderto find the minimum of the expected
value of the function over a set of distributions in a statistical model. In practice the computation of
the exact gradient is unfeasible, but in can be approximatedby evaluating empirical covariances.

1 Introduction

The approach to optimization based on stochastic relaxation [6, 10] comes from the idea of finding
the minimum of function by identifying a sequence of densities in a statistical modelthat converge in
probability to the delta distribution over the minima of the function itself. Such approach includes a broad
family of algorithms and meta-heuristics that make use of probability distributions tosample candidate
solutions to the optimization problem. More in general, such framework can alsobe used for other
techniques where the optimization problem is solved by introduced a new set of variables that identify a
probability distribution in a statistical model, such as for the method of moments in global optimization,
e.g., [9, 11].

In the Evolutionary Computation literature, Estimation of Distribution Algorithms (EDAs) [8] per-
fectly match this framework. The idea of finding the minimum of a function by employing a statistical
model is well known in the combinatorial optimization literature; among the others wemention the use
of the Gibbs distribution in optimization by Simulated Annealing [7] and the use of Markov Random
Fields in Boltzmann Machines [1].

In this paper we focus on the optimization of pseudo-Boolean function, real-valued functions defined
over binary variables, and we choose models that belong to the exponential family, such as Markov
Random Fields (MRFs). We present two algorithms in this framework, basedon the idea of directly
update the parameters of the statistical model in the direction of the gradient ofthe expected value of
the function. The first one is Stochastic Gradient Descent (SGD), and the second one Stochastic Natural
Gradient Descent (SNGD). They both implement the idea of replacing the exact computation of the
gradient with a stochastic version, but they differ on the use of the natural gradient [2]. The natural
gradient, described by Amari in Information Geometry [3], is the gradient evaluated with respect to the
Fisher Information Matrix, it is known to be invariant with respect to the parametrization of the statistical
model, and to have better convergence properties than regular gradient.
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The paper is organized as follows. In Section 2 we describe the approach to optimization based on
stochastic relaxation, while in Section 3 we present SGD and SNGD, together with some preliminary
experimental results over a set of standard benchmarks.

2 Stochastic Relaxation

Let us focus on the optimization of functions defined over binary variables, even if the generalization to
the case of a finite set is straightforward. Such class of functions is known in mathematical programming
literature as pseudo-Boolean functions [5] to underline that, although being defined on a binary domain,
they take values over the real numbers, rather then in0/1. The optimization of this class of functions is
of particular interest, since it is NP-hard in the general formulation [14], and no exact polynomial-time
algorithm is available in the literature.

In the following we introduce, for later convenience, an harmonic encoding based on the discrete
Fourier transform instead of the standard0/1 encoding for binary variables., i.e., we mapy = {0, 1} to
x = (−1)y, so that−10 = +1, and−11 = −1. We introduce the set of indicesL = {0, 1}n, and we
denote withΩ = {+1,−1}n the search space, such that an individual (a point)x = (x1, . . . , xn) ∈
Ω is a vector of binary variables. To provide a more compact notation we introduce a multi-index
notation, i.e., letα = (α1, . . . , αn) ∈ L be a vector of binary values, we definexα =

∏n
i=1

xαi

i . Any
pseudo-Boolean functionf : Ω → R has a unique representation given by the square-free polynomial
f(x) =

∑
α∈L cαxα. We introduce the stochastic relaxation by considering the functionalEp[f ] : S≥ →

[min f,max f ] and minimizing it over the set of all densities overΩ. We study stochastic relaxation
based on the exponential family of distributions. We introduce thek-dimensional exponential familyE

p(x; θ) = exp

( ∑

α∈M

θαxα − ψ(θ)

)
, θα ∈ R, (1)

with M ⊂ L \ {0}, and# (M) = k, where thexα’s are thecanonicalor sufficient statistics, andψ(θ) is
thecumulant generating function. The parameters inθ are usually callednaturalor canonical parameters
of the exponential family. Due to the exponential function, probabilities in the exponential family never
vanish, so that only distributions with full support can be represented using this parameterization.

The choice of such family is not too restrictive, since many models in statistics belong to the expo-
nential family. Another advantage is the possibility to include in the model specificinteractions among
the variables, according to the choice of the sufficient statisticsTi. On the other hand, the exponential
family includes only strictly positive distributions, so that the new optimization problem defined over
such statistical model may not admit a solution. In practice, this is not an issue,since we sample finite
populations and any limit distribution can be approximated with the desired precision with a sequence of
distributions that converge in probability to the boundary of the model.

3 Optimization by Gradient Descend

It follows from the properties of the exponential family in [10] that directional derivatives of the expected
value off in theθ parameterization can be evaluated in terms of covariances, i.e.,∂iEθ[f ] = Covθ(f, Ti).
Moreover, directional derivatives along a directionv that belongs to the tangent space ofE in θ can be
expressed asDv Eθ[f ] = Covθ(f, v). The directionv of maximum decrement ofEθ[f ] is the unit vector
v that maximizes the directional derivative ofEθ[f ]. If f can be expresses as a linear combination of the
Xα in E , the directional derivative is maximal whenv ∝ f , otherwise, it is maximal in the directionv
given by the projection̂fθ of f onto the tangent space atθ, i.e.,

f̂ = ∇Eθ[f ]I(θ)−1, (2)

where∇Eθ[f ] = (Covθ(f, Ti))
k
i=1 is the vector whose components are the partial derivatives∂iEθ[f ],

and I(θ) = [Covθ(Ti, Tj)]
k
i,j=1 is the covariance matrix. The covariance matrixI(θ) is the Fisher
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Figure 1: Experimental results over 30 runs for a set of 10x10 instances of a 2D Ising spin glass problems.
Population size=400. SGD and SNGD: Gibbs sampler iterations = 1,T = 1, step size = 1.

information matrix and the projection̂fθ of f over Tθ corresponds to thenatural gradient∇̃Eθ[f ], i.e.,
the gradient ofEθ[f ] evaluated with respect to the Fisher information metric.

By leveraging on these results, we propose an algorithm that updates explicitly the model parameters
in the direction of the natural gradient of the expected value off . Since this evaluation of the covariances
requires a summation over the entire search spaceΩ, we replace the exact covariances with empirical
covariances and estimate them from the current population. The basic iteration of an algorithm that be-
longs to the Stochastic Natural Gradient Descent (SNGD) meta-heuristic is summarized in Algorithm 1.

Algorithm 1: SGD AND SNGD

1. LetE be an exponential model andP0 the initial population, sett := 0 andθt := 0

2. Evaluate the empirical covarianceŝCov(f, Ti) andĈov(Ti, Tj) fromPt, and let
∇Ê[f ] := Ĉov(f, T )

3. [SNGD only] ∇Ê[f ] := ∇Ê[f ] Ĉov(Ti, Tj)
−1

4. Update the parametersθt+1 := θt − γ∇Ê[f ]

5. Sample the populationPt+1 from p(x; θt+1) ∈ E

6. Sett := t + 1

7. If termination conditions are not satisfied, GOTO 2.

The samples inP0 are usually generated randomly, but in case of prior knowledge about the function
to be minimized, a non-uniform population can be employed. The parameters ofthe algorithm are the
size of the populationPt, and the step sizeγ, together with the number of iterations of the Gibbs sampler
and the value of the initial temperatureT . Notice that the evaluation of the natural gradient requires to
solve a liner system which is more computationally expensive then just the evaluation of the gradient.
Moreover the empirical Fisher matrix may not be invertible, so that a solution is not guaranteed to exist.
This usually happens when the population converges to an optimum (local orglobal), and the sequence
of densities gets close to the boundary of the model.

We tested the performance of the algorithms to determine the ground states of a set of instances of
a 2D Ising spin glass model, where the energy function is defined over a square latticeE of sites by
f(x) = −

∑n
i=1

cixi −
∑

i<j∈E cijxixj , wherec are real coefficients. The sufficient statistics of the
exponential familyE employed in the relaxation have been determined according to the lattice structure,
in particular they have been chosen to match all the monomials in the expansion off . We compared the
performance of our algorithms with Is-DEUM [13], an implementation of DEUM specifically designed
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to solve spin glass problems, and with other two popular EDAs, PBIL [4] andsBOA [12]. We generated
populations of different sizes, up to100 times larger thann, and we setγ = 1, and the Gibbs sampler
temperatureT = 1. The value of theγ parameter much depends on the minimum and maximum value
of the function, that for these preliminary tests has been normalized between0 and100, in such a way
that when the minimum of the benchmark problem is found,f = 100, on the other side, the maximum
corresponds tof = 0. Preliminary results show that, similarly to Is-DEUM, our implementation of
SNGD is able to find the global optimum of both benchmarks, after few generations.

The most critical parameter of the SNGD algorithm is the size of the population generated at each
iteration by the Gibbs sampler. Clearly, the larger the sample size, the more accurate the predictions
of the covariances are. Indeed, even if the sufficient statistics match the correlations inf , so that there
are no critical points in the model and there exists a unique basin of attraction for ∇E[f ], in case of
small populations the algorithm may get trapped in local minima, since the closer to the boundary the
distribution, the smaller the variance of the sample.
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