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Abstract

Stochastic relaxation is an approach to optimization whiafs at finding the minimum of a func-
tion by identifying a proper sequence of probability distitions, in a given model, that minimize
the expected value of the given function. In this paper wegmetwo algorithms, in the stochastic
relaxation framework, for the optimization of real-valutohctions defined over binary variables:
Stochastic Gradient Descent (SGD) and Stochastic Natuealiént Descend (SNDG). These algo-
rithms use an exponential family to sample points from tleecdespace and search for the optimum.
Due to the properties of the exponential family, both gratand natural gradient can be evaluated
in terms of covariances between the function and the suffigttistics of the exponential family.
This allows gradient based techniques to be applied in dadénd the minimum of the expected
value of the function over a set of distributions in a stat&@tmodel. In practice the computation of
the exact gradient is unfeasible, but in can be approximagesialuating empirical covariances.

1 Introduction

The approach to optimization based on stochastic relaxation [6, 10] coovestlie idea of finding
the minimum of function by identifying a sequence of densities in a statistical ntiodietonverge in
probability to the delta distribution over the minima of the function itself. Such amtroncludes a broad
family of algorithms and meta-heuristics that make use of probability distributiosanple candidate
solutions to the optimization problem. More in general, such framework canbalased for other
techniques where the optimization problem is solved by introduced a nevinsgiables that identify a
probability distribution in a statistical model, such as for the method of moments ialgipbmization,
e.g., [9, 11].

In the Evolutionary Computation literature, Estimation of Distribution Algorithms (EP|&] per-
fectly match this framework. The idea of finding the minimum of a function by enipips statistical
model is well known in the combinatorial optimization literature; among the othermeveion the use
of the Gibbs distribution in optimization by Simulated Annealing [7] and the use ok&aRandom
Fields in Boltzmann Machines [1].

In this paper we focus on the optimization of pseudo-Boolean functiohyahaed functions defined
over binary variables, and we choose models that belong to the expdrfantily, such as Markov
Random Fields (MRFs). We present two algorithms in this framework, basdtie idea of directly
update the parameters of the statistical model in the direction of the graditdre ekpected value of
the function. The first one is Stochastic Gradient Descent (SGD), awkttond one Stochastic Natural
Gradient Descent (SNGD). They both implement the idea of replacing thet ewmputation of the
gradient with a stochastic version, but they differ on the use of the najtadient [2]. The natural
gradient, described by Amari in Information Geometry [3], is the gradieaiuated with respect to the
Fisher Information Matrix, it is known to be invariant with respect to the pextaization of the statistical
model, and to have better convergence properties than regular gradient.
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The paper is organized as follows. In Section 2 we describe the approaptimization based on
stochastic relaxation, while in Section 3 we present SGD and SNGD, togeitiesame preliminary
experimental results over a set of standard benchmarks.

2 Stochastic Relaxation

Let us focus on the optimization of functions defined over binary variables if the generalization to
the case of a finite set is straightforward. Such class of functions isrkimomathematical programming
literature as pseudo-Boolean functions [5] to underline that, althougly beifined on a binary domain,
they take values over the real numbers, rather thér'in The optimization of this class of functions is
of particular interest, since it is NP-hard in the general formulation [1#, i@ exact polynomial-time
algorithm is available in the literature.

In the following we introduce, for later convenience, an harmonic engoblased on the discrete
Fourier transform instead of the stand@rd encoding for binary variables., i.e., we map= {0, 1} to
r = (—1)Y, so that-1° = +1, and—1! = —1. We introduce the set of indicds = {0,1}", and we
denote withQ2 = {+1,—1}" the search space, such that an individual (a paing (zi,...,z,) €
Q) is a vector of binary variables. To provide a more compact notation we inteod multi-index
notation, i.e., letv = (a1,...,a,) € L be a vector of binary values, we defing@ = [, 2. Any
pseudo-Boolean functiofi : 2 — R has a unique representation given by the square-free polynomial
f(x) =3 cr cax®. We introduce the stochastic relaxation by considering the functigyj#l : S> —
[min f, max f] and minimizing it over the set of all densities o¥@r We study stochastic relaxation
based on the exponential family of distributions. We introduce:tdenensional exponential family

p(x;0) = exp (Z Oaz® — ww)), fa € R, 1

aeM

with M C L\ {0}, and# (M) = k, where ther®’s are thecanonicalor sufficient statisticsandi(0) is
thecumulant generating functiomhe parameters ithare usually calledaturalor canonical parameters
of the exponential family. Due to the exponential function, probabilities in xiperential family never
vanish, so that only distributions with full support can be represented tisis parameterization.

The choice of such family is not too restrictive, since many models in statistioed® the expo-
nential family. Another advantage is the possibility to include in the model spétificactions among
the variables, according to the choice of the sufficient statifticOn the other hand, the exponential
family includes only strictly positive distributions, so that the new optimization lpratdefined over
such statistical model may not admit a solution. In practice, this is not an isisige, we sample finite
populations and any limit distribution can be approximated with the desired joreeith a sequence of
distributions that converge in probability to the boundary of the model.

3 Optimization by Gradient Descend

It follows from the properties of the exponential family in [10] that directibtherivatives of the expected
value off in thed parameterization can be evaluated in terms of covariance$)Eg|[,f] = Covy(f, T;).
Moreover, directional derivatives along a directiothat belongs to the tangent spacefah 6 can be
expressed ab, Eg[f] = Covy(f,v). The directiorv of maximum decrement diy|f] is the unit vector

v that maximizes the directional derivativelgf[ f]. If f can be expresses as a linear combination of the
X% in &, the directional derivative is maximal whenc f, otherwise, it is maximal in the directian
given by the projectiorfy of f onto the tangent spacefti.e.,

f=VE[f11(6)7", (2)
whereVEy[f] = (Covy(f,T;))r_, is the vector whose components are the partial derivathvgg|f],
andI(6) = [Cove(ﬂ,ﬂ)]ﬁjzl is the covariance matrix. The covariance matf(¥) is the Fisher
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Figure 1. Experimental results over 30 runs for a set of 10x10 inssasf@e2D Ising spin glass problems.
Population size=400. SGD and SNGD: Gibbs sampler iterationd==,1, step size = 1.

information matrix and the projectiofy of f over T, corresponds to theatural gradientVEy[f], i.e.,
the gradient offy[ f] evaluated with respect to the Fisher information metric.

By leveraging on these results, we propose an algorithm that updatestxine model parameters
in the direction of the natural gradient of the expected valug &ince this evaluation of the covariances
requires a summation over the entire search sphoge replace the exact covariances with empirical
covariances and estimate them from the current population. The basioiteshan algorithm that be-
longs to the Stochastic Natural Gradient Descent (SNGD) meta-heuristimigarized in Algorithm 1.

Algorithm 1: SGDAND SNGD
1. Let& be an exponential model ari®f the initial population, set := 0 andé? := 0
2. Evaluate the empirical covariano@?v(f, T;) andé\ov(Ti, T;) from P, and let

VE[f] := Cov(,T)

[SNGD only] VE[f] := VE[f] Cov (T}, Tj)~*

Update the parameteftst! := ¢t — yVE[f]

Sample the populatigR**! from p(z; 0*+!) € £

Sett:=t+1

If termination conditions are not satisfied, GOTO 2.

No ok ow

The samples ifP" are usually generated randomly, but in case of prior knowledge atefitration
to be minimized, a non-uniform population can be employed. The paramettfrs afgorithm are the
size of the populatio®?, and the step sizg, together with the number of iterations of the Gibbs sampler
and the value of the initial temperatufe Notice that the evaluation of the natural gradient requires to
solve a liner system which is more computationally expensive then just theagoealwf the gradient.
Moreover the empirical Fisher matrix may not be invertible, so that a solutiost iguaranteed to exist.
This usually happens when the population converges to an optimum (logkllal), and the sequence
of densities gets close to the boundary of the model.

We tested the performance of the algorithms to determine the ground statestaffarstances of
a 2D Ising spin glass model, where the energy function is defined ovanaaestptticeE of sites by
flx) = =370 cimi — X2 jep cijrixj, wherec are real coefficients. The sufficient statistics of the
exponential family employed in the relaxation have been determined according to the lattice structure
in particular they have been chosen to match all the monomials in the expangiolefcompared the
performance of our algorithms with Is-DEUM [13], an implementation of DEUddfically designed
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to solve spin glass problems, and with other two popular EDAs, PBIL [4&8®©@A [12]. We generated
populations of different sizes, up 1®0 times larger tham, and we sety = 1, and the Gibbs sampler
temperaturd’ = 1. The value of they parameter much depends on the minimum and maximum value
of the function, that for these preliminary tests has been normalized befah100, in such a way
that when the minimum of the benchmark problem is fouhe; 100, on the other side, the maximum
corresponds tgf = 0. Preliminary results show that, similarly to Is-DEUM, our implementation of
SNGD is able to find the global optimum of both benchmarks, after few geoesa

The most critical parameter of the SNGD algorithm is the size of the populativergted at each
iteration by the Gibbs sampler. Clearly, the larger the sample size, the monatecthe predictions
of the covariances are. Indeed, even if the sufficient statistics matclotreations inf, so that there
are no critical points in the model and there exists a unique basin of attraotidnHf], in case of
small populations the algorithm may get trapped in local minima, since the closez mtimdary the
distribution, the smaller the variance of the sample.
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